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Abstract: To analyse the influences of infrared sequence complexity on the target tracking performance,
the infrared sequence complexity evaluation had been modeled as a multi-attribute decision making
problem. The each frame complexity of the infrared sequence had been evaluated with seven image
metrics based on the modified technique for order preference by similarity to ideal solution method and
entropy weights. The whole infrared image sequence complexity had been evaluated with three metrics
based on weighted summation method and entropy weights. The normalized correlation template
matching algorithm, basic mean shift algorithm, and the variance ratio algorithm had been used to
implement tracking experiments. Infrared sequences with different complexity had beed used to validate
the effectiveness of the presented infrared sequence evaluation method. The experiments showed that:
the proposed infrared sequence complexity evaluation solution could truly indicate the differences of the
tracking task difficulties for diverse infrared sequences, there was strong correlation with the tracking
performance, and could accurately reflect the major influencing factors for target tracking task.
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0 Introduction

Complexity is a concept almost applied to all
discipline, from sociology, physics, chaos theory to

computational complexity. Because there are great

diversities in their research subjects and methods,
there is not a unified definition for complexity. The

concept of image complexity was first proposed by

[1]

Peters'”, who considered that an image complexity

metric should provide a priori estimate of the difficulty
of locating a true target in an image. The infrared
image sequence complexity metric not only can be used

for target tracking algorithms development and

infrared seekers and

imaging fire control applications™ , but also can be

[3]
’

performance evaluation for

used for synthetic infrared scene assessing
camouflage™’, et al. In this paper, the infrared image
sequence complexity is addressed from the perception of
target tracking task difficulty. According to Yilmaz"',
the target tracking performance depends on the
which  the
performed and the end use for which the tracking
Different

information and

context/environment in tracking s

sought. tracking

different

information is being

algorithms often use
paradigms to process incoming images, tasks that are
difficult for one algorithm may be easy for another and
vice versa. Different tracking algorithms can be
compared based on the measures of image complexity,
which can quantify the relative ease or difficulty of
tracking the target in an infrared image sequence. To
facilitate analysis, we mainly consider the image
complexity measure for single target tracking task.

At present, some image metrics have been
presented for quantifying the scene complexity. The
US Army Aviation and Missile Command ( AMCOM)
had developed a Gray-Level Co-occurrence Matrix
based Trackability Metric (GLCM-TM) to predict the
performance of auto-trackers for imaging infrared

J[2]

missile seekers™. Anderson developed a combined

metric to predict auto-detection and  tracker

performance by a classical neural network approach™ .
Diao proposed Inter-Frame Change Degree of Target
(IFCDT) metric, and experiment results showed that
there was a good monotone relationship between this
metric and recognition

image sequence

[7]

target
performance Scott defined a trackability measure in

an information  theoretic  framework™ . Qiao
established functional models by partial least squares
method between three infrared image complexity
metrics and two target detection performance metrics
simultaneously"’!.

As aforementioned, the difficulty of an ATR task

depends not only on its input, but also on the type of

information it extracts and its method of extracting
information™. A particular image metric derived from
one image feature for an infrared sequence may be not
indicative of the target tracking task difficulty for a
particular  tracking  algorithm. Presently, a
comprehensive complexity metric constructed with
many image metrics via objective fraction weight for
characterizing an infrared image sequence does not
exist, The Multi-Attribute Decision Making (MADM)
methods are frequently used to solve real world
problems with conflicting, and

Therefore,  the

MADM technique provides an effective framework for

multiple,

attributes™'® ",

incommensurate
the comprehensive evaluation of the infrared image
sequence complexity. This paper models the infrared
image sequence complexity evaluation as a MADM
problem, and presents a simple and effective approach
to solve this problem.

The infrared image sequence complexity is divided
into two aspects in this paper.

First, the single frame integrated complexity of
the infrared image sequence has been established with
seven image metrics via entropy weights, and the
modified technique for order preference by similarity to
ideal solution (M-TOPSIS) has been used to rank order
frames by their respective integrated complexity.

Second, the
complexity has been established on the results of the

whole infrared image sequence
single frame complexity of the infrared image sequence.
Three metrics have been proposed, and the weighted
summation method with entropy weights has been used
to rank order various infrared image sequences by their

respective integrated complexity.

1 Multi-attribute decision making

Multi-attribute decision making refers to making

decisions in the presence of multiple, usually
conflicting, criteria, and is widely used in ranking or
selecting one or more alternatives from a set of
available alternatives™” ', A MADM problem with a
total of m alternatives characterized by n attributes is
generally described by an m X n decision matrix D.

S di dy, e dy,
D=|S, d, d, - d,, (D

S, d. d. = d,.

(S,,S,,++,S,) are the considered
(M, M, ,+-,M,) are the
corresponding attributes vector for each alternative,
and d; denotes the attribute value for the ith

where § =

alternatives, M =

alternative with respect to the jth attribute.

In addition, the attributes values of the decision
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matrix need to be normalized to dimensionless values.
The most commonly adopted normalization methods
adjust attributes scores based on their distance from a
maximum and / or minimum value. Other techniques
use an ideal point instead of the minimum or maximum
value. The ideal point is a value that represents the

best possible or most desired outcome for a given

attribute. Sometimes the ideal point is only a
theoretical concept, never actually attainable in
practice.

If the expectancy is larger-the-better, then it can
be expressed by
_d;—mind,

max d, —min d,

(2)

Uy

If the expectancy is smaller-the-better, then it can
be expressed by

max d,—d,;

Y ax d;—min d; Sy

If the expectancy is nominal-the-best (i. e. closer

to the desired value), then it can be expressed by

|d, —d|
=1— ij
s max | d; —d | 2
where d; is the original attribute value, v, is the

normalized attribute value, max(d;) and min(d,) are
the maximum and minimum of the jth attribute, d is
the ideal value of the jth attribute. The value range of
the original attribute value d; is transformed to [0,1 ]
after normalization.

In this paper, the M-TOPSIS method™' has been
employed to evaluate the single frame complexity of the
infrared image sequence; the weighted summation
method™'" has been employed to evaluate the whole
infrared image sequence complexity; the entropy
method™* has been employed to determine assessing
weights for these two kinds of complexity evaluation.

The essential ideal of the entropy weight method is
that the relative importance of an attribute is directly
related to the information transmitted by the attribute
relative to the set of attributes under consideration. The
greater the dispersion in the evaluations of the objects for a
given metric, the more important the metric.

Due to space limitations, the M-TOPSIS method,
the weighted summation method, and the entropy
weight method will not be described in detail here, and

[10-11]

these papers can be referenced.

2 The single frame integrated comple-
xity of the infrared image sequence
based on MADM

2.1 [Establishment of the single frame integrated
complexity of the infrared image sequence based on
MADM

As aforementioned, the infrared image sequence

complexity is addressed from the perception of target
tracking task difficulty in this paper. To facilitate
analysis and calculation, seven metrics have been
proposed to measure image complexity: 1) Intra-Frame
Target Texture Distinctness (IFTTD); 2) Intra-Frame
Clutter To Signal (Target) Ratio (IFCSR); 3) Intra-
Frame Target Occultation Ratio (IFTOR); 4) Inter-
Frame Target Texture Variation (IFTTV); 5) Inter-
Frame Target Size Variation (IFTSV); 6) Inter-Frame
Target Orientation Variation (IFTOV); 7) Inter-
Frame Target Location Variation (IFTLV ). The
former three metrics can be categorized as intra-frame
target identifiability, and the other four metrics can be
categorized as inter-frame target variation. Certainly,
these measurable image complexity metrics are not
independent, but interdependent.

Each of the seven metrics only addresses a subset
of the single frame infrared image complexity, and they
should be combined into a holistic metric, which can
provide a comprehensive evaluation of the overall single
frame infrared image complexity, and different frames
can be ranked in terms of their respective integrated
image complexity. The single frame integrated
complexity is the combination of intra-frame target
identifiability and inter-frame target variation. The
logical relation between the single frame integrated
complexity and seven complexity metrics is shown in

Fig. 1.

Tbe single frame integrated
complexity
I

! |

Intra-frame target Inter-frame
identifiability target variation

i i }

Intra-frame Intra-frame | | Intra-frame
target
target texture 'clutter t(_) occultation
distinctness | |signal ratio ratio
Inter-frame || Inter-frame Inter-frame Inter-frame
target texture || target size ||target orientation||target location
variation variation variation variation

Fig. 1 The logical relation between single frame integrated
complexity of infrared sequence and seven complexity
metrics

The establishment of the single frame integrated
complexity for an infrared image sequence based on the

M-TOPSIS method is performed by following steps. 1)

Construct the decision matrix with the seven

complexity metrics values for every frame of an infrared

image sequence; 2) Normalize the image complexity
decision matrix; 3) Determine the assessing weights by
entropy method; 4) Carry out the residual steps of the

M-TOPSIS method; 5) Rank order frames by their

respective integrated image complexity.

0311001~ 3
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Because we do not only compare the complexity of
the

complexities of all the frames in an infrared image

each frame in an infrared image sequence,
sequence are used to provide a integrated evaluation of
the whole infrared image sequence complexity. It must
be pointed out that the minimums and maximums for
the seven complexity metrics respectively are different

The

image

among various infrared image sequences.

integrated complexities of different infrared
sequences should be compared on a common basis.
Therefore, the seven complexity metrics values in the
decision matrix are normalized by Eq. (4), which can
use the ideal maximum and minimum for the seven
to normalize, as

complexity metrics respectively

opposed to the maximum and minimum of each
complexity metric for an infrared image sequence. The
seven complexity metrics and their corresponding ideal
maximum and minimum are described in detail as
follows.

2.2 Intra-frame target identifiability

Intra-frame target identifiability is referred to the
easiness of discriminating the target from background.
In this section, three metrics have been introduced to
measure the intra-frame target identifiability, including
IFTTD metric, IFCSR metric, and IFTOR metric.
First, the target and local background window as the
reference Region Of Interests (ROIs) are defined for
evaluation purpose. To be consistent with the tracking
algorithms employed in the experiments in Section 5,
the target window 1is represented by a rectangle
bounding box. As is shown in Fig. 2, the target and
local background window are at a randomly possible
orientation in the digital image coordinate system. The
target region is defined as the minimum bounding
rectangle which encompasses all pixels classified as
target, and the outer rectangle ring around the target

gate is defined as the local background region, which is

Local background region B

(a) Schematic drawing (b) A real infrared image

(c) Target window

(d) Local background window

Fig. 2 Target and local background window at a

randomly possible orientation

found by scaling the target window by a factor two in
each dimension.
2.2.1 Intra frame target texture distinctness

The Gray Level Co-Occurrence Matrix (GLCM)
differences between the target and its local background
have been used to measure the intra-frame target
advantage
traditional methods in that metrics based on GLCM not

texture distinctness. This is an over
only evaluate the value of pixels in an image but also
the relative displacement between pixels of different
values.

The IFTTD metric is defined by the Average Co-

occurrence Error (ACE) as follows™?,

1 G—1G—1 .
22| PEGLd.0) —
Nromdenscoi—o—o
Pl jld.0 | (5)
where N, cv is the total number of the GLCM, G is the

number of possible gray levels, P& (i,j|d.0) is the

IFTTD=

joint probability of a pixel of gray level i and a pixel of
gray level j given the distance d in direction § for the
target pattern, and P. (i,j|d,0) is the corresponding
joint probability for the local background pattern.
When founding the local background GLCM, all target
pixels are excluded from the evaluation and vice-versa.

The dimension of a GLCM is determined by the
maximum gray value of the pixel. To implement the
ACE, the gray level number of infrared images is set to
32, which decrease the co-occurrence matrix sizes as 32
X323 A quantized orientation interval of 45° has been
employed, corresponding to 0°, 45°, 90° and 135°,
each a member of the set @, the use of different
distance ranges is to obtain both local and global
textural information; Last, a range of distance values d
€ D=1{1,3,5,7} has been employed. Thus, the total
number of GLCM isNg.ev=|D| |®] =16, is the

cardinality or the number of elements in the set.

Although averaging the total co-occurrence matrix
differences inevitably smoothing some spatial features,
it does incorporate both local and global textural
information constructively.

The target and local background GLCMs for
different distance and orientation for the target and
local background window in Fig. 2(c) ~(d) is shown in
Fig. 3. The target GLCM and local background GLCM
shown in Fig. 3 suggest that the GLCM formalism can
be used to quantify how closely the target matches the
local background not only in contrast but also in
structure by measuring the degree the similarity
between the matrices.

Obviously, the sum of any normalized GLCM
equals to 1. According to triangle inequality, for a
particular d and 0, the range of | P5(i,j|d.0) —Pi(i,j

ld.® | is [0,2]. The minimum 0 and maximum 2 are

0311001-4
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0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
(a) Target for ¢=1 and 6=0°

10 15

0.02 0.03
(c) Target for =7 and 6=135°

Fig. 3

theoretically limits, and will never be actually
attainable in practice, because the target GLCM and
the local background GLCM could not be entirely same
or different in a real infrared scene.

To facilitate the normalization of IFTTD metric
values for different frames in an infrared image
sequence, the minimum 0 and maximum 2 are used as
the common minimum and maximum for the
normalization of IFTTD metric values by Eq. for
different frames in an infrared image sequence.

2.2.2 Intra frame clutter to signal (target) ratio

The Signal to Clutter Ratio (SCR) metric, which
incorporates the difference between the mean target
and background intensity, the effects of target
structure and the local background structure, is defined
as follows'™.

SCR= Y — ) o

OB

(6)

where p is the average value of target intensity, up is
the average value of local background intensity, oy is
the standard deviation of the target intensity, and oy is
the standard deviation of the local background
intensity.

The ideal value of SCR metric is infinite. To
facilitate the normalization of SCR metric values for
different frames in an infrared image sequence, the

inverse of SCR metric has been employed in this paper,

0.06 Y

0.05+.

0.04
0.03
0.02
0.01

13 20 25 30

0 0.01 0.02 0.03 0.04 0.05
(b) Local background for d=1 and 6=0°

10

1 2 3 4 5 6 7 8 9 10 11
(d) Local background for ¢=7 and 6=135°

Target and local background GLCMs for the target and local background window in Fig. 2(c)-(d)

which can be called Intra-Frame Clutter to Signal
(target) Ratio (IFCSR).

op
Y% (HT7#15)2+0%‘
The ideal value of TFCSR metric is 0, and the

maximum is set to 1, which is a larger value for IFCSR

IFCSR=

N

metric. These two values are used as the common
minimum and maximum for the normalization of IFCSR
metric values by Eq. for different frames in an infrared
image sequence,

2.2.3

A critical

Intra-frame target occultation ratio

problem frequently causing target
tracking failure is occlusion, whether it is partial or
complete. The more part of the target is occulted, the
more difficult is to track the target, and the higher
complex is the current frame infrared image. The ratio
of the number of the pixels occluded divided by the
total number of the pixels on the target™’.
Sora

SI"'I‘/\

where Sy is the occulted target area, and Sprs is the

IFTOR= €))

full target area. In practice, the target area in the
previous frame before the target disappears is taken as
the full target area.

Obviously, the ideal value of IFTOR metric is 0
when there is no occultation occurs; the nadir value of
IFTOR metric is 1 when the

target is occulted

0311001-5
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completely. These two values are used as the common
minimum and maximum for the normalization of
IFTOR metric values by Eq. for different frames in an
infrared image sequence.
2.3 Inter-frame target variation

Inter-frame target variation has important effects
on target tracking result’. The larger is inter-frame
target variation, the more difficult is to track the
target, and the higher complex is the current frame
infrared image. Four metrics have been employed to
measure inter-frame target variation: inter-frame target
texture variation, inter-frame target size variation,
inter-frame target orientation variation, and inter-
frame target location variation.
2.3.1 Interframe target texture variation

As similar with the IFTTD metric, the Inter-
Frame Target Texture Variation (IFTTV) is also
measured by the ACE between current frame and
previous frame as follows.

L oSS pecjla.m—

INGLCM dE DIEOI=0j=0
PEGi,jld.0) | €D
where N cu i1s the total number of the GLCM, G is the
number of possible gray levels, P§ (i.j|d.0) is the

IFTTV=

joint probability of a pixel of gray level i and a pixel of
gray level j given the distance d in direction Ofor the
target pattern in current frame, and Pl (i.j|d.0) is
the corresponding joint probability for the target
pattern in previous frame.

The configurations of the gray level number of
infrared images, orientation interval, and range of
distance values for the IFTTV metric are the same with
the IFTTD metric. In addition, the common minimum
and maximum for the normalization of IFTTV metric
values by Eq. for different frames in an infrared image
sequence are also the same with the IFTTD metric.
2.3.2 Interframe target size variation

The Inter-frame Target Size Variation (IFTSV)

metric is defined as follows.

IFTSV:\/<7L’;L’ | )2+(7‘ W";,W' | ) (10)

—1 i—1
where L, and W, are the length and width of the target

respectively in current frame, and L, , and W,_, are the
length and width of the target respectively in previous
frame.

Obviously, the ideal value of IFTSV metric is 0
when the target size remains changeless between

consecutive frames; the nadir value of IFTSV metric is

V2 when the target length and width changes equal to
the length and width of the target respectively in
previous frame. These two values are used as the
common minimum and maximum for the normalization

of IFTSV metric values by Eq. for different frames in

an infrared image sequence.
2.3.3
The Inter-Frame Target Orientation Variation
(IFTOV) metric is defined as follows.
IFTOV=|¢,— ¢, | (1D

where ¢, and ¢, , are the target orientation angles in

Interframe target orientation variation

current frame and previous frame respectively.
Obviously, the ideal value of IFTOV metric is 0
when the target orientation remains changeless between
consecutive frames; the maximum of IFTOV metric
does not exist, because the target orientation variation
differs greatly from various real infrared image
sequences, such as the flying fighter-plane infrared
sequence and stationary tank infrared sequence.
Therefore, the maximum of IFTOV metric is set as
20°. These two values are used as the common
minimum and maximum for the normalization of
IFTOV metric values by Eq. for different frames in an
infrared image sequence. When the IFTOV metric is
larger than 20° for some frames in a infrared image
sequence, the normalization result of IFTOV metric
value is set as the same with 20°,
2.3.4

When the target is far from the camera its

Inter-frame target location variation

projection on the image plane is relatively smaller than

when it is closer™,

Therefore, the inter-frame target
location variation should be normalized by the target
size. Considering the target orientation, the inter-
frame target location variation should be calculated in
the rotated coordinate system. Thus, the Inter-Frame
Target Location Variation (IFTLV) metric is defined

as follows.

IFTLV=./Vi+W; (12)

where
_cos ¢y (x;—a, ) —sin ¢ (y; —y, )
e L2 9
~sin ¢ (a;—a—,) Fcos ¢ (v, — i)
W W2 an

Obviously, the ideal value of IFTLV metric is 0

when the target remains stationary between consecutive

frames; the nadir value of IFTLV metric is +/2 when
the distances that the target moves along the length and
along the width equal to the semi-length and semi-
width of the target respectively in previous frame.
These two values are used as the common minimum
and maximum for the normalization of IFTLV metric
values by Eq. for different frames in an infrared image
sequence.
2.4 Some issues of the seven complexity metrics when
the target disappears
When the target is completely occulted or the
target leaves out of the image plane, the target

disappears from the field of view, and there are some

0311001- 6
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issues to be considered. The target attributes such as
image features, size, orientation, and location, et al. ,
can not be obtained, and they only can be estimated
when the target disappears. Therefore, when the
target disappears from the field of view for some time,
the IFTTD metric, IFCSR metric, and IFTOR metric
are set to the highest complexity values; the inter-
frame target variation metrics are set to the
corresponding complexity metrics values of the previous

frame before the target disappears completely.

3 The whole infrared image sequence
complexity based on MADM

The whole infrared image sequence complexity is
established on the weighted summation method. Three
metrics have been employed to measure the complexity
of the whole infrared image sequence: the Average
Complexity of Each Frame (ACEF), the Proportion of
High Complexity Frames number to the total frames
number (PHCF), the Average Complexity of High
( ACHCF ). The
complexity of each frame is defined as the threshold,

Complexity Frames average
and the frames whose complexities are above the
threshold are defined as high complexity frames.

In addition, the three complexity metrics values in
the decision matrix for different infrared image
sequences are normalized by Eq., the maximum and
minimum of each complexity metric are obtained by
comparison of different infrared image sequences.

The entropy method is again used for assessing
corresponding weights of the three complexity metrics.

The establishment of the whole infrared image
sequence complexity based on the weighted summation
method is performed by following steps. 1) Construct
the decision matrix with the three complexity metrics
values for each infrared sequence; 2) Normalize the
image sequence complexity decision matrix; 3 )
Determine the assessing weights by entropy method;
4) Carry out the residual steps of the weighted
summation method; 5) Rank order infrared sequences

by their respective integrated complexity.

4 Experiments

4.1 Establishment of experiments
4.1.1
To illustrate the

Infrared image sequences to be tested on

effectiveness the proposed

infrared sequence complexity evaluation solutions, five

real infrared image sequences with different

complexities have been tested on, including a stationary
tank infrared sequence collected from a captive flight
test platform provided by AMCOM, three infrared
sequences from the VIVID dataset, and a flying fighter
AMCOM

plane infrared sequence. The closure

sequence exemplifies the challenges of target tracking
such as poor target visibility, strong ego-motion, small
targets, size variations, significant clutter and
background noise. The infrared sequences in the
VIVID dataset present frequent occlusion by foliage,
target exiting and re-appearing, which can be used to
examine the performance of track loss of the tracking
algorithms. In the flying fighter plane infrared
sequence, the Su-27 was flying at the speed of 800~
900 km/h. The flying fighter plane infrared sequence
exemplifies the challenges of target tracking such as
high speed motion, deformation, background clutter,
and motion blur.

To compute the complexity metrics of the five
infrared image sequences, the ground-truth information
of each frame has be obtained manually by stepping
frame-by-frame through the recorded sequence.

4.1.2

evaluation measures

Target tracking algorithms and per formance

Because most infrared imaging auto-trackers
implemented in systems are either company proprietary
or classified, no specific algorithms will be described
particularly™. These target tracking algorithms in

open literature with available source codes are
employed and evaluated in this paper, and similar
algorithms can be expected in real infrared imaging
auto-trackers. The employed target algorithms codes
were provide by Robert'"”, including Normalized
Correlation Template Matching (NCTM) , Basic Mean
Shift (BMS), and Variance Ratio (VR).

The overlap error metric has been employed to
measure the tracking errors'’™ , which is based on the
amount of overlap between the ground truth and
tracker boxes. Fig. 4 shows a tracker box overlaid on a
ground truth box in an infrared image with each region
identified. The area (in pixels) for the truth region,
tracker region, and overlap region are defined as
NTRU, NTRK, and NOL, respectively. A ratio of
NOL to NTRU gives an indication of the overlap

compared to the ground truth box.

Truth(TRU)

Overlap(OL)

Track(TRK)

Fig. 4 Track box overlaid on ground truth box
The two ratios are defined as follows.
Rixo=Noo/Nigy (15
Riure =Nov/ N (16)

0311001-7
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The overlap error metric Eqgy is defined as follow.
_ RTRU _'_RTRK
2

when the tracker box is exactly overlaid on and is the

Eoen =1 an

same size as the truth box, the overlap error metric
equals to the minimum 0; when there is no overlap
between the tracker box and the truth box, the overlap
error metric equals to the maximum 1.

When the overlap error metric Epy, is greater than a
threshold Ty » the tracker is considered to have lost the
target. In this paper, the threshold Ty is set 0. 9.

The lost track ratio 5 is the ratio between the
number of frames where the tracker is not successful
N, and the total number of frames in an infrared image
sequence.

7= Nv./Ny (18)

If the lost track ratio exceeds 10%, then the
target in the infrared image sequence is scored as
“unsuccessfully tracked” by the tracking algorithm;
otherwise, the target in the infrared image sequence is

scored as “successfully tracked”. Ts=1 indicates being

being

successfully tracked ; Ts = 0 indicates

(c) The moving car infrared sequence

unsuccessfully tracked.

The average overlap error metric Eqgy is calculated
for the frames where the tracker is successful. And the
performance vector (Ts,q,FOEM) is used to evaluate
the tracking algorithm comprehensively. These three
performance metrics should be considered sequentially.
Only when the values of the infrared image sequence
“successfully tracked” indicator T for two tracking
algorithms are the same, the other two performance
metrics need to be compared. Likewise, only if the
values of the lost track ratio 5 for two tracking
algorithms are comparable, the average overlap error
metric Eopy can be compared.

4.2 The single frame integrated complexity of five
infrared sequences

The ground truth results for the five infrared
image sequences are shown in Fig. 5. For space
limitations, the visual tracking results by the three
tracking algorithms for the five infrared image
sequences have not been listed. The results of the
single frame integrated complexity for five infrared

sequences are calculated by the solution established in

L

7

(d) The flying fighter plane infrared sequence

(e) The moving truck infrared sequence

Fig. 5

The ground truth results for the five infrared image sequences
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and are shown in Fig. 6.

Tracking errors of the three algorithms for the five infrared sequences

The entropy method are significantly different to each other for

weights of the seven complexity metrics for the single

every infrared image sequence, which reflects the

frame integrated complexity of five infrared sequences
are listed in Table 1. The overlap errors of the three

tracking algorithms for the five infrared image

sequences are shown in Fig. 7. According to Table 1,

the objective weights of the seven single [rame

complexity metrics derived by the entropy weight

capability of the entropy weight method in reflecting
the average intrinsic information generated by the
complexity metrics values. This would help identifying
the most important complexity metric on which the
frames of each infrared image sequence have the most

divergent variation.
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For the stationary tank infrared sequence, the
tank size is becoming larger during the infrared camera
closing in on the stationary tank. Due to the motion of
camera, there are some variations of the tank location.
Because the three tracking algorithms can not adjust
the tracking window adaptively, the overlap errors
become larger as the camera is closing in on the tank.
In addition, the tracking window of the BMS algorithm
is frequently deviates from the target window due the
similar gray intensity feature in the local background
region with the target, which results in larger overlap
error across the tracking process. According to Table
1, the IFTLV metric has the highest degree of
importance in evaluating the single frame integrated
complexity of the stationary tank infrared sequence,
followed by the IFTTD metric. The weight for the
IFTOR metric is zero, because there is no occultation
through out the stationary tank infrared sequence. As
is shown in Fig. 6 (a), the integrated complexities of
the most frames in the stationary tank infrared
sequence are below 0. 2, and the integrated complexity
will be above 0. 2 when the target size or location
varies.

For the moving tank infrared sequence, the major
cause of tracking failures or errors is that parts of the
target leave out of the image plane from frame00275 to
frame00304, which is considered as occultation. The
maximum of occultation ratio occurs at frame00291. As
is shown in Fig. 6(b), the integrated complexity of the
target becomes larger when parts of the target begins
to leave out of the image plane, and vice versa. The
integrated complexities of the most frames in the
moving tank infrared sequence are below 0. 2, and the
integrated complexity will be above 0. 2 when parts of
the target leave out of the image plane. The maximum
integrated complexity of the infrared sequence occurs at
frame00289, and the
frame00291 is the second largest. According to Table.
1, the IFTOR metric has the highest degree of
importance, followed by the IFTCSR metric, which is

integrated complexity at

consistent with our subjective judgment. The NCTM
algorithm loses the target at frame00279, and does not
reacquire the target until the end frame. It is
preposterous for the BMS algorithm that the overlap
error decreases when parts of the target leave out of the
image plane and the overlap error increases when the
target moves into the image plane. The cause for this
preposterous situation is that the tracking window of
the BMS algorithm is frequently deviates from the
target window due to the similar gray intensity feature
in the local background with the target before parts of
the target leave out the image plane, which results in

larger overlap errors; the tracking window adjusts

adaptively to be smaller when parts of the target leave
out the image plane, which results in smaller overlap
errors; the tracking window can not adjusts adaptively
to be larger when the target moves into the image
plane, which results in larger overlap errors again. The
VR algorithm has higher
interference than the NCTM algorithm, and the

resistance to clutter
overlap error is smaller than that of the BMS algorithm
before parts of the target leave out of the image plane.
As similar as BMS algorithm, the tracking window of
the VR algorithm adjusts adaptively to be smaller when
parts of the target leave out the image plane, which
results in smaller overlap errors; the tracking window
of the VR algorithm can not adjusts adaptively to be
larger when the target moves into the image plane,
which results in larger overlap errors.

For the moving car infrared sequence, the major
causes of tracking failures or errors are the clutter in
the local background and the complete occultation. The
target is occulted partially or or completely by a tree
from frame01331 to frame01359. The BMS algorithm
loses the target at frame01295 due to the impact of
clutter. The VR algorithm loses the target at
frame01333 due to the impact of occultation. Because
the time that the target is completely occulted is very
short, the tracking performance of the NCTM has not
been affected. Because when the target disappears from
the field of view, the IFTTD metric, IFCSR metric,
and the IFTOR metric are set to the highest complexity
values, and the inter-frame target variation metrics are
set to the corresponding complexity metrics values of
the previous frame before the target disappears
completely, the integrated complexity maintains the
maximum during complete occultation, as is shown in
Fig. 6 (¢). According to Table. 1, the IFTOR metric
has the highest degree of importance, followed by the
IFTCSR metric, which is also consistent with our
subjective judgment.

For the flying fighter-plane infrared sequence, the
major causes of tracking failures or errors are high
speed motion, deformation, and background clutter.
As is shown in Fig. 6 (d), the integrated complexities
of the most frames in the flying fighter-plane infrared
sequence are between 0. 2 and 0. 8, which are evidently
higher than those of the other four infrared sequences.
According to Table 1, the IFTLV metric has the
highest degree of importance, followed by the IFTOV
metric, which is also consistent with our subjective
judgment. The NCTM algorithm loses the target at
frame00045 due to the high speed motion of the target,
reacquires the target at frame00118, and loses the
target at frame00198 due the clutter caused by the
clouds. The tracking performance of the VR algorithm
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is better than the BMS algorithm before losing the
target. The VR algorithm also loses the target at
frame00198, and the BMS algorithm loses the target at

frame00196, which are all due to the clutter caused by
the clouds.

Table 1 Entropy weights of the seven single frame complexity
metrics for the five infrared sequences
Complexity
lafrared metries  pTTD IFTCSR IFTOR IETTV IFTSV IFTOV IFTLV
sequences
Stationary tank 0.228 0.133 0. 000 0.116 0.048 0.053 0.422
Moving tank 0.048 0.106 0.746  0.016  0.027 0.022  0.035
Moving car 0.117 0. 397 0.414 0.014 0.013 0.009 0.036
Flying fighter plane  0.004  0.017  0.000 0.033 0.008 0.168  0.770
Moving truck 0. 100 0.252 0. 000 0.065 0. 050 0.221 0.312

For the moving truck infrared sequence, there are lots
of similar gray intensity pixels in the local background
region with the target, which causes the tracking windows
of the three algorithms deviate from the target window.
As is shown in Fig. 6 (e), the integrated complexities of
the most frames in the moving truck infrared sequence are
between 0. 24 and 0. 3. According to Table 1, the IFTLV
metric has the highest degree of importance, followed by
the IFTCSR metric.

Based on the results and

above experiment

analysis, the weight coefficients produced by the
entropy method are divergent for the single frame
complexity metrics, which reflects that it can better
resolve the inherent conflict between the complexity
metrics embedded in this MADM problem, and it can
reflect the major influencing factor for target tracking
task. The M-TOPSIS method can identify the
relevance of the complexity metrics to the tracking task
difficulty, which suggests that the M-TOPSIS method
can reflect the decision information emitted by the
Through the

analysis of the relation between the image complexity

seven complexity metrics effectively.

metrics and tracking performance results by the three
algorithms, we can understand their advantages and
The NCTM
susceptible to high speed motion; the BMS algorithm is

disadvantages. algorithm is more
more susceptible to distraction by clutter in the local
background region; the VR algorithm combined with
an online feature selection mechanism, which is based
on applying the two class variation ratio to log
likelihood distributions computed for a given feature
from samples of object and background pixels, has
BMS

influence the

improved the tracking performance of the
The that

tracking performance results of the three algorithms

algorithm. major factors

can be summarized as follows: occultation, clutter,
size variation, and high speed motion.

4.3 The whole infrared image sequence complexity of
five infrared sequences

The comprehensive performance evaluation results

of the three tracking algorithms for the five infrared
sequences are listed in Table 2, the total complexity
metrics values and the total complexity of each infrared
sequence are listed in Table 3, and the entropy weights
of the total complexity metrics for the five infrared
sequences are listed in Table 4.

Table 2 The comprehensive performance evaluation results of

the three tracking algorithms for the five infrared sequences

Algorithms NCTM BMS VR
Infrared — — —
sequences Ts yi Eoen Ts n Eoen Ts n Eoem

Stationary tank 1 0.00 0.28 1 0.00 0.35 1 0.00 0.29
Moving tank 0 0.59 0.18 1 0.00 0.40 1 0.00 0.33
Moving car 1 0.00 0.19 0 0.91 0.56 0 0.54 0.26

Flying fighter
plane

(=}
(=}

.45 0.24 1 0.06 0.42 1 0.04 0.24

Moving truck 1 0.00 0.31 1 0.00 0.40 1 0.00 0.36

Table 3 Comparison of the total complexity of the
five infrared sequences

Total

comple?dty Total

etrics ACEF PHCF ACHCF lexit Rank
Infrared compiexity
sequences
Stationary tank  0.200 0.044 0. 348 0.033 5
Moving tank 0.240 0.229 0.440 0. 258 3
Moving car 0.313 0.190 0.713 0.512 2
Flying fighter plane 0. 450 0. 733 0. 542 0. 878 1
Moving truck  0.271 0.080 0.301 0.103 4

Table 4 Entropy weights of the total complexity
metrics for the five infrared sequences
ACEF PHCF ACHCF

0. 287 0.420 0.293

According to the comparison method by the
comprehensive tracking performance vector addressed
in Section 4. 1. 2, the tracking performance results of
the five infrared sequences by the three algorithms can
be ranked. The tracking performance results of the
stationary tank infrared sequence by the three tracking
algorithms are the best among all the five infrared

sequences, followed by the moving truck infrared
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sequence, the moving tank infrared sequence, the
moving car infrared sequence, and the flying fighter
plane infrared sequence.

According to the total complexity of the five
infrared sequences listed in Table 3, the total
complexity of the stationary tank infrared sequence is
the least, followed by the moving truck infrared
sequence, the moving tank infrared sequence, the
moving car infrared sequence, and the flying fighter
plane infrared sequence.

According to Table 4, the percentage of high
complexity frames metric has the highest degree of
importance in evaluating the whole infrared sequence
complexity, followed by the average of high complexity
frames metric. This is in line with the real situation
and the general perception of influencing factors for
target tracking task. Usually, tracking failures or
errors usually happen at high complexity frames.

Based on the above analysis, the whole infrared
sequence complexity evaluation method proposed in this
paper could indicate the difference of target tracking
task difficulty for various infrared sequences, and the
tight correlations between the total complexity of the
infrared sequence and the comprehensive tracking

performance results have been validated.

5 Conclusions

The infrared image sequence complexity evaluation
established with MADM
technique, which is addressed from the perception of
target tracking task difficulty. The M-TOPSIS method

combined with entropy weights has been used to

solutions have been

establish the single frame integrated complexity of the
infrared image sequence with seven image complexity
metrics. The weighted summation method combined
with entropy weights has been used to establish the
whole infrared image sequence complexity with three
metrics. The well-known challenging AMCOM closure
sequences and VIVID dataset have been used to
validate the effectiveness of the proposed solutions. To
analyze the relationship between the complexity metrics
and the tracker performance, the NCTM algorithm,
BMS algorithm, and VR algorithm have been used to
process the chosen infrared sequences.

The experiments for the single frame integrated
complexity show that the weight coefficients produced
by the entropy method are divergent, which ensures
that the evaluation result is not affected by the
interdependence of complexity metrics. The M-
TOPSIS method can identify the relevance of the
complexity metrics to the tracking task difficulty. The

advantages and disadvantages of the three tracking

algorithms have been demonstrated through the relation
between the single frame complexity metrics and tracking
performance results. The major factors that influence the
tracking performance results of the three algorithms can be
summarized as follow: occultation, clutter, size variation,
and high speed motion.

The experiments for the whole infrared image
sequence complexity show that the proposed total
complexity solution for the whole infrared image
sequence could indicate the difference of target tracking
task difficulty for various infrared image sequences,
and the tight correlation between the total complexity
of the infrared sequence and the comprehensive tracking
performance results have been validated.
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